SR25/37/37L/52

FEATURES

- Excellent anti-surge characteristics
- stable characteristics to moisture resistance even in high resistance range.

L₂ Ø D

APPLICATIONS

- CRT-RGB witch is used TV, Monitor
- Devices which need protection surge voltage between power preliminary and secondary.

Dimensions (mm) **TYPE** L 2 D (± 0.05) ±0.8 ±0.8 Max. **SR25** 2.7 6.5 7.5 0.6 **SR37** 3.7 9.0 12 0.7 SR37L 11 0.7 3.7 13 **SR52** 6.0 16.5 18.5 0.8

DESCRIPTION

A metal glazed film is deposited on a high grade ceramic body. After a Helical groove has been cut in the resistive layer, tinned electrolytic

copper wire are welded to the end- caps. The resistors are coated with a brown and blue non flammable lacquer witch provides electrical, mechanical and climatic protection.

QUICK REFERENCE DATA

DESCRIPTION	VALUE					
DESCRIPTION	SR25	SR37	SR37L	SR52		
resistance range	47 kΩ to 33 MΩ		47 kΩ to 500 MΩ			
resistance tolerance	±10%,±5%, ±2%, ±1% (E12, E24, E48 series)					
temperature coefficient	± 350 ppm / ℃					
rated dissipation at T _{amb} = 70 ℃	0.25 W	0.5 W	1 Ws	1W		
max. working voltage	1600 V	3600 V	7000 V	10000 V		
max. overload voltage	1600 V	3600 V	7000 V	10000 V		
basic specifications		IEC 60	115-1B			
safety requirements 1) 125V : 480 kΩ ~ 12 kΩ 2) 250V : 960 kΩ ~ 12 kΩ	-	C-UL ; 1676 VDE: 0860	-	-		
climatic category (IEC60)	55 / 155 / 56					
stability, ∆R/R _{max} after load : 1000 hours	± 1.5% +0.1 Ω					
soldering heat		± 0.5%	+0.05 Ω			

SR25/37/37L/52

ORDERING INFORMATION

Ordering code indicating resistor types and packing

Table 1

Туре	Bandolier width	Packing	Quantity	Resistance range	Tol. ± %	Ordering code
SR25 (0.25W)	52mm	ammo	5000	51 kΩ to 33 MΩ	1 2 5	PPSR 241 3xxxx PPSR 241 63xxx PPSR 241 53xxx

^{*} PPSR 241 45xxx : yellow color is used to code resistance tolerance \pm 5%

Table 2

Туре	Bandolier width	Packing	Quantity	Resistance range	Tol. ± %	Ordering code
	52mm ar	amma	1000		1	PPSR 242 4xxxx
SR37				47 kΩ to 500 MΩ	2	PPSR 242 39xxx
(0.5W)		ammo	1000		5	PPSR 242 13xxx
		1	1		10	PPSR 242 63xxx

^{*} PPSR 242 55xxx : yellow color is used to code resistance tolerance \pm 5%

Table 3

Туре	Bandolier width	Packing	Quantity	Resistance range	Tol. ± %	Ordering code
SR37L (1Ws)	64mm	ammo	1500	47 kΩ to 500 MΩ	1 2 5 10	PPSR 244 4xxxx PPSR 244 35xxx PPSR 244 36xxx PPSR 244 37xxx
(IVVS)	52mm	ammo	1000	47 kΩ to 500 MΩ	5	PPSR 244 53xxx

Table 4

Туре	Bandolier width	Packing	Quantity	Resistance range	Tol. ± %	Ordering code
SR52 (1W)	64mm	ammo	500	47 kΩ to 500 MΩ	1 2 5 10	PPSR 250 5xxxx PPSR 250 15xxx PPSR 250 23xxx PPSR 250 12xxx

Table 5. Last digit of 12NC

Resistance decade	Last digit
10 to 97.6 kΩ	3
100 to 976 kΩ	4
1 to 9.76 MΩ	5
10 to 97.6 MΩ	6
100 to 976 MΩ	7

Ordering Example

The ordering code of a SR37- 0.5W resistor, value 8.2 $M\Omega$ ±5%, taped on a bandolier of 1000 units in ammopack is: PPSR 242 13825.

SR25/37/37L/52

Limiting values

Table 6

TYPE	LIMITING VOLTAGE ⁽¹⁾ (V)	LIMITING POWER (W)
SR25	1600	0.25
SR37	3600	0.5
SR37L	7000	1 (small)
SR52	10000	1

Note

1. the maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60 115-1"

The maximum permissible hot – spot temperature is 155 $\,^{\circ}$ C.

DERATING

The power that the resistor can dissipate depends on the operating temperature : Fig. 1

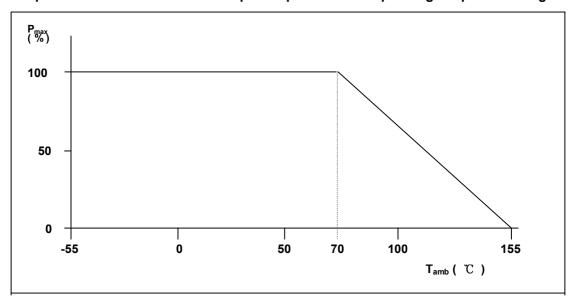


Fig. 1 Maximum dissipation (P_{max}) in percentage of rated power as a function of the ambient Temperature (T_{amb})

SR25/37/37L/52

Surge resistance characteristics

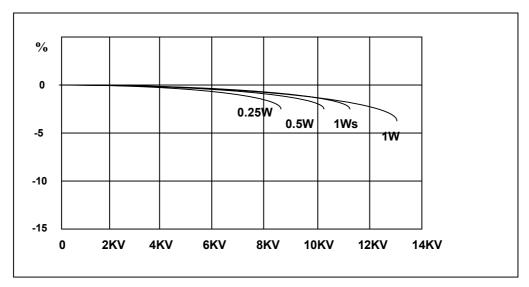
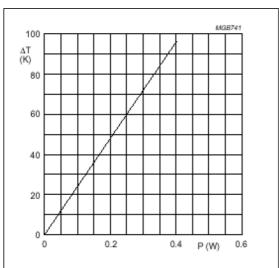



Fig. 2 Maximum allowed peak surge voltage in accordance with "IEC 60065 chapter 14.1" 10 discharges form a 10nF capacitor charged to V_{max} ; 12 discharges / minute

Application information

SR25 - 0.25W

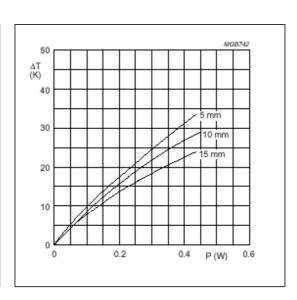
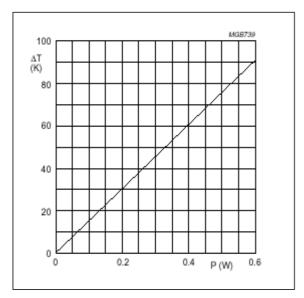



Fig. 3 Hot – spot temperature rise (Δ T) as a function of dissipated power

Fig.4 Temperature rise (Δ T) at the lead end of the lead (soldering point) as a f function of dissipated Power at various lead lengths after mounting

SR25/37/37L/52

SR37 - 0.5W

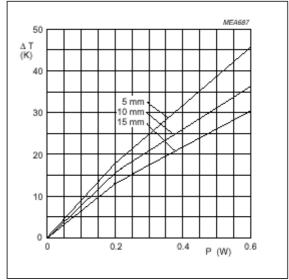
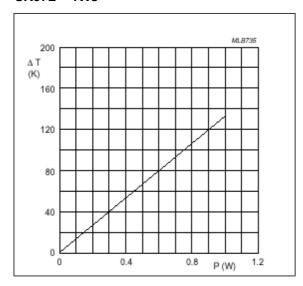



Fig. 5 Hot – spot temperature rise (Δ T) as a function of dissipated power

Fig.6 Temperature rise (△ T) at the lead end of the lead soldering point as a function of dissipated power at various lead lengths after mounting

SR37L - 1Ws

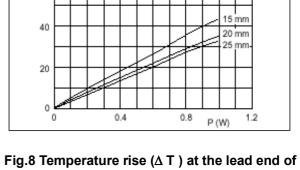
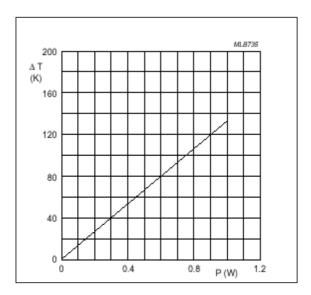


Fig. 7 Hot – spot temperature rise (Δ T) as a function of dissipated power

Fig.8 Temperature rise (∆ T) at the lead end of the lead soldering point as a function of dissipated power at various lead lengths after mounting

100


80

60

ΔΤ

SR25/37/37L/52

SR52 - 1W

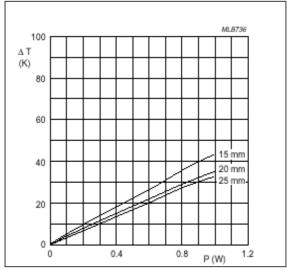


Fig. 9 Hot – spot temperature rise (ΔT) as a function of dissipated power

Fig.10 Temperature rise (Δ T) at the lead end of the lead soldering point as a function of dissipated power at various lead lengths after mounting

MECHANICAL DATA

Table 7. Mass per 100 units

TYPE	MASS (g)		
SR25 - 0.25W	25		
SR37 - 0.5W	42		
SR37L - 1Ws	67		
SR52 - 1W	148		

MARKING

The nominal resistance and tolerance are marked on the resistor using four or five colored Bands in accordance with IEC publication 60 062 "color codes for fixed resistors"

Table 8. BODY COLORS

TYPE	COLORS
SR25 – 0.25W	Brown
SR37 – 0.5W	Brown
SR37L - 1Ws	Brown
SR52 – 1W	Blue

SR25/37/37L/52

TEST AND REQUIREMENTS

Table 9. Test procedures and requirements

TEST	PROCEDURE	REQUIREMENTS					
1591	PROCEDURE	SR25	SR37	SR37L	SR52		
robustness of terminations: tensile all samples	φ 0.6 / 0.7 / 0.8 mm : load 10N:10s	number of failures < 10 ⁻⁶					
bending half number of samples	φ 0.6 / 0.7 / 0.8 mm : load 5N: 4x90°	number of failures < 10 ⁻⁶					
torsion other half number samples	3x360°in opposite directions	no damage $\pm 0.25\% + 0.05 \Omega$					
solderability	2 s ; 235℃ flux 600	good tinn	ning; no da	mage			
soldering heat	Thermal shock: 3 s; 360 ℃ 6mm from body	± 0.5% +0.05Ω					
rapid change of temperature	30 minutes at −55°C and 30 minutes at +155°C;5cycles	s $\pm 0.5\%$ +0.05 Ω					
vibration	frequency 10 to 500 Hz; displacement 1.5mm or acceleration 10g; 3 directions total 6 hours(3x2 hours)	no damage \pm 1% +0.05 Ω					
Climatic sequence dry heat damp heat (accelerated) 1st cycle	16 hours;155℃ 24hours;55℃; 90 to 100% RH	R _{ins min} .; 10	000 MΩ				
cold low air pressure damp heat (accelerated) remaining cycles	2 hours; - 55℃ 2 hours;8.5 Kpa; 15 to 35℃ 5 days;55℃;95 to 100% RH	± 2% + 0.	1Ω				
damp heat	56 days; 40 ℃; 90 to 95% RH dissipation 0.01 P _n	± 1.5% +	0.1Ω				
endurance	1000 hours at 70 $^{\circ}$ C; P _n or V _{max}	± 1.5% +	0.1Ω				
temperature coefficient	between –55 $^{\circ}\!$	± 350 ppr	n / ℃				
dielectric withstanding voltage	500V _{RMS} SR25 700V _{RMS} SR37,SR37L and SR52 during 1min. V- block method	no break	down				
insulation resistance	500V _{DC} during 1 minute ; V – block method	min. : 100	00 MΩ				
short time overload	rated voltage x 2.5 5 s on 45 s off (V ≤ V _{max}) 10 cycles	±1% +0	0.05Ω				

SR25/37/37L/52

TEST AND REQUIREMENTS

TEST		PROCEDURE			REQUIR	EMENTS				
TEST					SR37	SR37L	SR52			
overload test	during 2) R ≥ 1	 1) 480 kΩ ≤ R <1 MΩ;1500V_{RMS} during 1 sec. 2) R ≥ 1 MΩ; 3600V_{RMS} during 5 sec. 								
high voltage surge test	Switc = 10KV	Switch $1 \text{ k}\Omega$ $= 10 \text{KV} \qquad 0.01 \mu\text{F}$ Circuits			no evidence of flash over, mechanical damage, arcing or, insulation breakdown					
		m a 10 nF capacit discharges / min								
SR25	SR37	SR37L	SR52							
51 kΩ-91 kΩ : 3 KV	51 kΩ-470 kΩ : 7 KV									
100 kΩ-470 kΩ : 5 KV	480 kΩ-1G : 10KV									
510 kΩ-33 MΩ : 7 KV										

^{*} SR25; 1nF capacitor