UniOhm

SPECIFICATION FOR APPROVAL

ROPLA

Description: Cement Fixed Resistors

Royalohm Part no.:

PRZDAWJP103B00 (PRZD $10W + - 5\% 10k\Omega B/B$)

Approved by

RoHS V3 Compliant (EU) 2015/863 REACH Compliant

Uniroyal Electronics Global., Ltd.

88th LongTeng Road, Economic & Technical Development

Zone, Kunshan, Jiangsu, China

Tel: +88 512 5763 1400 / 1411 / 1422 / 1433

Fax: +86 512 5763 4599

E-mail Address: Global sales : Globalsales@uniohm.com

http://www.uni-royal.cn

Approved	Checked	Prepared
Mr. XP Hong	Mr. S. Polthanasan	Ms. T. Chadaporn

Issue Date: 2022/05/20

	CHANGE NOTIFICATION HISTORY						
Version	Date of Version	History	Remark				
1	2022/05/20	1. Resistance Value: 10kΩ					
		- P for Powr film type					

1. Scope:

This specification for approval relates to Cement Fixed Resistors manufactured by UNIOHM's specifications.

2. Type designation:

The type designation shall be in the following form:

(Ex.)	PRZD	10W	J	10kΩ
	Type	Power Rating	Resistance	Nominal
			Tolerance	Resistance

3. Ratings:

Ratings shall be shown in the table 1.

Table 1

Туре	PRZD
Rated Power	10W at 70°C
Rated Ambient Temp.	70 °C
Operating Temp. Range	-55°C ~ +155°C
Resistance Tolerance	± 5%
Wire-wound Resistance Range	10kΩ

3.1 Power rating:

Resistors shall have a power rating based on continuous full load operation at an ambient temperature of 70 $^{\circ}\mathrm{C}$

3.2 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial line frequency and waveform curresponding to the power rating , as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

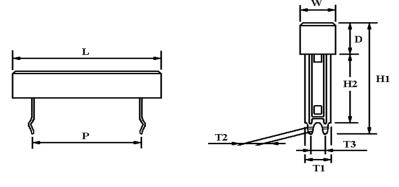
Note: Max. Working Voltage or $\sqrt{P \times R}$ whichever is lesser

Max. Overload Voltage or $2.5 \sqrt{P \times R}$ whichever is lesser

Were: RCWV = Rated DC or RMS AC continuous working voltage at commercial-line frequency and waveform (volt)

P = Power Rating (watt)

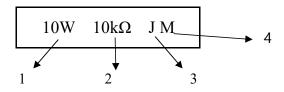
R = Nominal Resistance (ohm)


Cement Fixed Resistors Heat Rise Chart 150 Heat rise (°C) **120** 90 60 30 40 60 **80** 100 20 Rated load (%) +70°C +155°C +275°C 100 Percent rated load (%) 80 **Derating Curve** 60 40 20 -55 150 Ambient temperature (°C) 4. Construction: **Cement: Power Film Type** Confirmation List of Material

No.	Subpart Name	Material	Material Generic Name	Remark
1	Body	Rod Type Ceramics	Al ₂ O ₃ , SiO ₂	
2	Terminal lead	Terminal cap plated with Tin	Fe: 73%, Mn: 21%, C: 5%	
3	Ceramic Case	Ceramic	Al ₂ O ₃ , SiO ₂	
4	Resistance element	Metal Oxide Film	Metal Oxide Film	
5	Filling Materials	Quartz mixed sand	SiO_2	

<i>7</i> . C1	Cement Fixed	1 Resistors
5. Characteristic	:	T. A. W. A A.
Characteristics	Limits	Test Methods (JIS C 5201-1)
Dielectric	No evidence of flashover,	Resistors shall be clamped in the trough
withstanding	mechanical damage, arcing	of a 90° metallic V-block and shall be tested at
voltage	or insulation break down	AC potential respectively for $60 + 10/-0$ secs.
, shuge	01 1110 1111 1111 1111 1111 1111	(Sub-clause 4.7)
		Natural resistance change per temp.
		degree centigrade.
		R2-R1
Temperature	± 350 PPM/°C Max.	x10 ⁶ (PPM/°C)
coefficient		R1(t2-t1)
		R ₁ : Resistance value at room temperature (t1)
		R2: Resistance value at room temp. plus 100 °C (t2)
		(Sub-clause 4.8)
	Resistance change rate is	Permanent resistance change after the
Short time	$\pm (5\% + 0.05 \Omega)$ Max. with no	application of a potential of 2.5 times RCWV
overload	evidence of mechanical damage	for 5 seconds
		(Sub-clause 4.13)
		Direct load :
		Resistance to a 2.5 kgs direct load for 10 secs.
		in the direction of the longitudinal axis of the
		terminal leads
Terminal strength	No evidence of mechanical	Twist test:
	damage	Terminal leads shall be bent through 90 $^{\circ}$ at
		a point of about 6mm from the body of the
		resistor and shall be rotated through 360°
		about the original axis of the bent terminal in
		alternating direction for a total of 3 rotations
		(Sub-clause 4.16)
		The area covered with a new, smooth
		clean, shiny and continuous surface free
Solderability	95 % coverage Min.	from concentrated pinholes.
		Test temp. of solder : $245^{\circ}C \pm 5^{\circ}C$
		Dwell time in solder: 2 to 3 secs.
		(Sub-clause 4.17)
		The leads immersed into solder bath to 3.2 to 4.8 mi
Soldering temp.	Electrical characteristics shall be	from the body. Permanent resistance change shall be
reference	satisfied. Without distinct	checked.
	deformation in appearance.	Wave soldering condition: (2 cycles Max.)
	(95 % coverage Min.)	Pre-heat: $100 \sim 120$ °C, 30 ± 5 sec.
		Suggestion solder temp.: $235 \sim 255$ °C, 10 sec. (N
		Peak temp.: 260 °C
		Hand soldering condition:
		Hand Soldering bit temp. : 380 ± 10 °C
		Dwell time in solder: $3 + 1/-0$ sec.

Resistance to soldering heat Resistance to evidence of mechanical damage Resistance change rate is	Characteristics	Limits			Test Methods			
Resistance to soldering heat $ \begin{array}{c} \pm (1\% + 0.05\Omega)\text{Max. with no} \\ \text{evidence of mechanical damage} \\ \end{array} \begin{array}{c} \pm (1\% + 0.05\Omega)\text{Max. with no} \\ \text{evidence of mechanical damage} \\ \end{array} \begin{array}{c} \pm (350^{\circ}\text{C} \pm 10^{\circ}\text{C} $	Characteristics	Limits			(JIS C 5201-1)		
soldering heat evidence of mechanical damage $(Sub\text{-}clause 4.18)$ Resistance change after continuous 5 cycles for duty shown below: Step Temperature $\pm (2\% + 0.05\Omega)\text{Max}$. with no evidence of mechanical damage 2Room temp . $10\sim 15\text{mins}$ $3 +155^{\circ}\text{C} \pm 2^{\circ}\text{C}$ 30mins 4Room temp . $10\sim 15\text{mins}$ $2 \text{Resistance change after 1,000 hours}$ operating at RCWV with duty cycle of 2Cond life in Resistance value 2Cond life in Resistance value 2Cond life in Resistance change after 2Cond life in Resistance value 2Cond life in Resistance change after 2Cond life in Resistance value $2 \text{Cond life life life}$ Resistance value 2Cond life Res		Resistance change rate is		Permanent i	resistance change when	leads		
Csub-clause 4.18 Resistance change after continuous 5 cycles for duty shown below: Step Temperature Time $\pm (2\% + 0.05 \Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05 \Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05 \Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05 \Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05 \Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05 \Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05 \Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05 \Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05 \Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05 \Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05 \Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05 \Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05 \Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05 \Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05 \Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05 \Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05 \Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05 \Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05 \Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05 \Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05 \Omega)$ Max. with no \pm	Resistance to	$\pm (1\% + 0.05 \Omega)$ Max. with	no	immersed to	3.2 to 4.8 mm from th	ne body in		
Resistance change rate is $\pm (2\% + 0.05 \Omega) \text{Max. with no} $ evidence of mechanical damage $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	soldering heat	evidence of mechanical dam	evidence of mechanical damage		$^{\circ}$ C solder for 3 ± 0.5 s	ecs.		
Temperature cycling $\pm (2\% + 0.05\Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05\Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05\Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05\Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05\Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05\Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05\Omega)$ Max. with no evidence of mechanical damage $\pm (2\% + 0.05\Omega)$ Momentum. \pm								
Temperature cycling Resistance change rate is $\pm (2\% + 0.05 \Omega)$ Max. with no evidence of mechanical damage $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Resistance of	change after continuous	S		
cycling $ \begin{array}{ccccccccccccccccccccccccccccccccccc$				5 cycles for	duty shown below:			
evidence of mechanical damage $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Temperature	Resistance change rate is		Step	Temperature	Time		
$\frac{3}{4} + 155^{\circ}\text{C} \pm 2^{\circ}\text{C} \qquad 30 \text{ mins}$ $\frac{4}{4} \text{Room temp.} \qquad 10 \sim 15 \text{ mins}$ (Sub-clause 4.19) Resistance change after 1,000 hours operating at RCWV with duty cycle of (1.5 hours "on", 0.5 hour "off") in a humidity test chamber controlled at 40 °C \pm 2 °C and 90 to 95 % relative humidity (Sub-clause 4.24.2.1) Permanent resistance change after 1,000 hours operating at RCWV with duty cycle of (1.5 hours "on", 0.5 hour "off") at 70°C \pm 2°C ambient	cycling	$\pm (2\% + 0.05 \Omega)$ Max. with	no	1	-55°C ± 3°C	30 mins		
		evidence of mechanical dam	nage	2	Room temp.	10~15 mins		
(Sub-clause 4.19) Resistance change after 1,000 hours operating at RCWV with duty cycle of (1.5 hours "on", 0.5 hour "off") in a humidity test chamber controlled at 40 °C \pm 2 °C and 90 to 95 % relative humidity (Sub-clause 4.24.2.1) Permanent resistance change after 1,000 hours operating at RCWV with duty cycle of (1.5 hours "on", 0.5 hour "off") at 70 °C \pm 2 °C ambient				3	+155°C ± 2°C	30 mins		
Resistance change after 1,000 hours operating at RCWV with duty cycle of (1.5 hours "on", 0.5 hour "off") in a humidity test chamber controlled at 40 °C \pm 2 °C and 90 to 95 % relative humidity (Sub-clause 4.24.2.1) Permanent resistance change after 1,000 hours operating at RCWV with duty cycle of (1.5 hours "on", 0.5 hour "off") at 70°C \pm 2°C ambient				4	Room temp.	10~15 mins		
Load life in Resistance value Dower film Power film $\pm 5\%$ Resistance value $\pm 5\%$ relative humidity Resistance value Chamber controlled at 40 °C ± 2 °C and 90 to 95 % relative humidity (Sub-clause 4.24.2.1) Permanent resistance change after 1,000 hours operating at RCWV with duty cycle of (1.5 hours "on", 0.5 hour "off") at $\pm 5\%$ Cycle of (1.5 hours "on", 0.5 hour "off") at $\pm 5\%$				(Sub-clause	4.19)			
Load life in humidity Resistance value $\Delta R/R$ $\pm 5\%$ relative humidity Permanent resistance change after Load life Resistance value $\Delta R/R$ $\pm 5\%$ Resistance value $\Delta R/R$ $\pm 5\%$ Permanent resistance change after 1,000 hours operating at RCWV with duty cycle of (1.5 hours "on", 0.5 hour "off") at $\pm 5\%$ $\pm 5\%$ $\pm 5\%$ $\pm 5\%$ Resistance value $\Delta R/R$ $\pm 5\%$				Resistance of	change after 1,000 hour	rs		
humidity Power film $\pm 5\%$ chamber controlled at 40 °C \pm 2 °C and 90 to 95 % relative humidity (Sub-clause 4.24.2.1) Permanent resistance change after 1,000 hours operating at RCWV with duty cycle of (1.5 hours "on", 0.5 hour "off") at 70 °C \pm 2 °C ambient				operating at	RCWV with duty cycl	le of		
relative humidity (Sub-clause 4.24.2.1) Permanent resistance change after 1,000 hours operating at RCWV with duty Power film $\pm 5\%$ cycle of (1.5 hours "on", 0.5 hour "off") at $70^{\circ}\text{C} \pm 2^{\circ}\text{C}$ ambient	Load life in	Resistance value	ΔR/R	(1.5 hours "	on", 0.5 hour "off") in	a humidity test		
Load life	humidity	Power film	± 5%	chamber co	ntrolled at 40 °C \pm 2 °C	and 90 to 95 %		
Load life Resistance value $\Delta R/R$ 1,000 hours operating at RCWV with duty cycle of (1.5 hours "on", 0.5 hour "off") at $70^{\circ}\text{C} \pm 2^{\circ}\text{C}$ ambient				relative hun	nidity			
Load life Resistance value $\Delta R/R$ 1,000 hours operating at RCWV with duty cycle of (1.5 hours "on", 0.5 hour "off") at $70^{\circ}\text{C} \pm 2^{\circ}\text{C}$ ambient						(Sub-clause 4.24.2.1)		
Power film $\pm 5\%$ cycle of (1.5 hours "on", 0.5 hour "off") at $70^{\circ}\text{C} \pm 2^{\circ}\text{C}$ ambient				Permanent 1	resistance change after			
$70^{\circ}\text{C} \pm 2^{\circ}\text{C}$ ambient	Load life	Resistance value	ΔR/R	1,000 hours operating at RCWV with duty				
		Power film	± 5%	cycle of (1.5	5 hours "on", 0.5 hour '	'off") at		
(Sub-clause 4.25.1)				$70^{\circ}\text{C} \pm 2^{\circ}\text{C}$	ambient			
				(Sub-clause 4.25.1)				

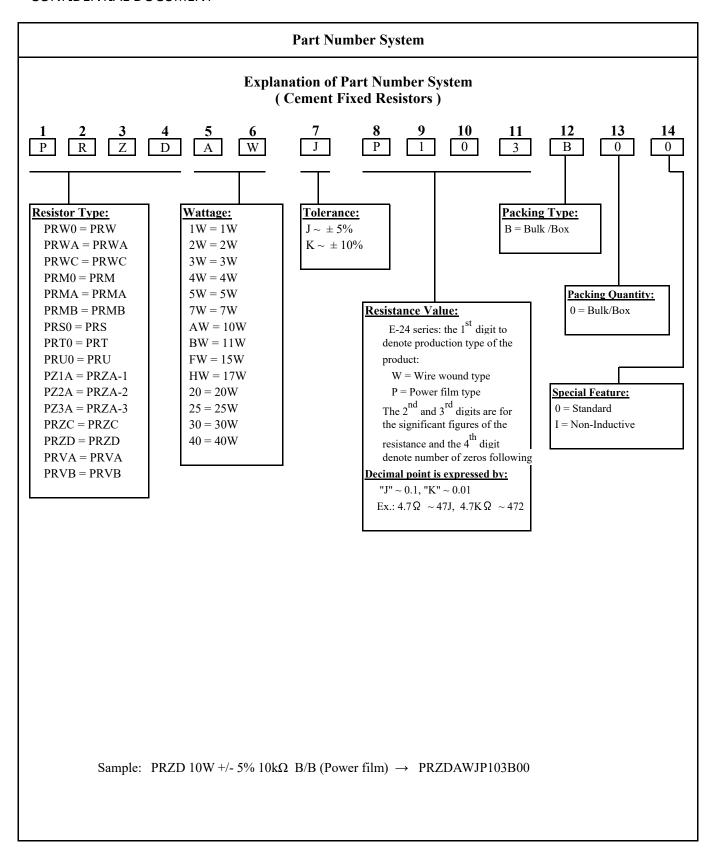

6. Dimension:

Туре	Rating Wattage	W ± 1	D ± 1	L	P ± 1.5	T ₁ ± 1	$T_2 \pm 0.2$	$T3 \pm 0.5$	H ₁ + 2	H ₂ + 2
PRZD	10W	10	9	48±1.5	32	7	1.5	3.5	24	10

7. Marking:

Ex.

Code description and regulation


- 1. Wattage rating.
- 2. Nominal resistance value.
- 3. Resistance tolerance.
- 4. W marking for Wire wound type M marking for Power film type

 $J:\,\pm\,5~\%$

 $K:\pm 10\%$

Color of marking: Black ink

Unit: mm

Environment Related Substance

This product complies to EU RoHS directive, EU PAHs directive, EU PFOS directive and Halogen free.

Ozone layer depleting substances.

Ozone depleting substances are not used in our manufacturing process of this product.

This product is not manufactured using Chloro fluorocarbons (CFCs), Hydrochlorofluorocarbons (HCFCs),

Hydrobromofluorocarbons (HBFCs) or other ozone depleting substances in any phase of the manufacturing process.

Storage Condition (MSL1)

The performance of these products, including the solderability, is guaranteed for a year from the date of arrival at your company, provided that they remain packed as they were when delivered and stored at a temperature of $25^{\circ}\text{C} \pm 5^{\circ}\text{C}$ and a relative humidity of $60\%\text{RH} \pm 10\%\text{RH}$

Even within the above guarantee periods, do not store these products in the following conditions. Otherwise, their electrical performance and/or solderability may be deteriorated, and the packaging materials (e.g. taping materials) may be deformed or deteriorated, resulting in mounting failures.

- 1. In salty air or in air with a high concentration of corrosive gas, such as Cl₂, H₂S, NH₃, SO₂, or NO₂
- 2. In direct sunlight

Legal Disclaimer

The information provided in the catalog/data sheet is for the purpose of describing product specifications only, and UNIOHM and its affiliates (hereinafter collectively referred to as "UNIOHM") hereby disclaim any liability for any errors, inaccuracies or incompleteness contained in any product-related information (including but not limited to product specifications, datasheets, pictures, graphics).

UNIOHM reserves the right to modify this content without prior notice. Thank you for your understanding.

UNIOHM makes no representation, warranty, and guarantee as to the fitness of its products for any particular purpose or the continuing production of any UNIOHM products.

To the maximum extent permitted by law, UNIOHM disclaims

- (i) any and all liability arising out of the application or use of any UNIOHM product,
- (ii) any and all liability, including without limitation special, consequential or incidental damages, and
- (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.

UNIOHM products are not intended for use in medical, life-saving, or life-sustaining equipment, nor are they intended for any other purpose where product failure or mismanagement could endanger life or cause harm to or death to the human body. Customers use or sell UNIOHM products for the above purposes at their own risk. If need products for such purposes, please be sure to consult with our company to obtain relevant information about the applicable products.

Regardless of the application of UNIOHM products, it is recommended to carry out safety tests while using measures such as protective circuits and redundant circuits to protect the safety of equipment.