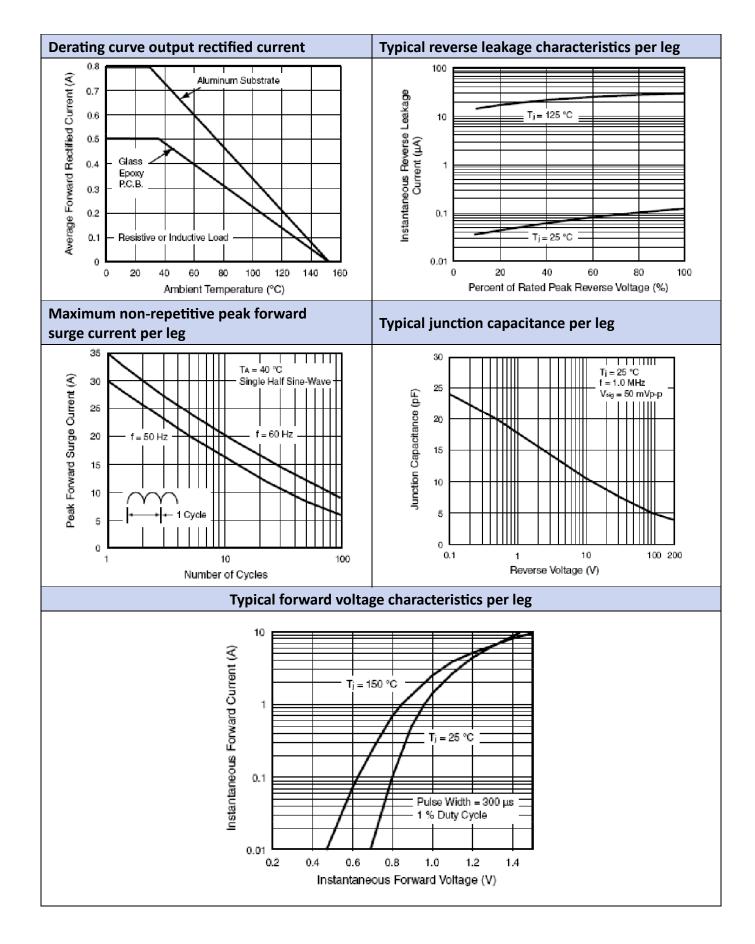


SMD Single Phase Bridge Rectifiers

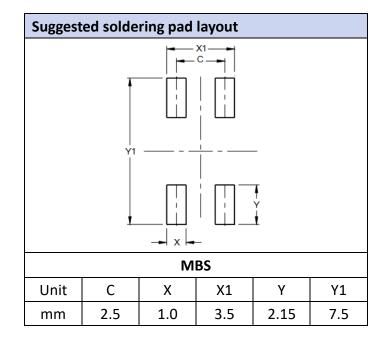
Primary characteristics				
Parameter	Value	Unit		
Maximum Repetitive Peak Reverse Voltage	200 ~ 1000	V		
Maximum Average Forward Rectified Current	0.5 ~ 0.8	A		

Features

- MBS case for easy automatic insertion •
- Pb-free and RoHS compliant •
- High temperature soldering guaranteed: 260°C/10s
- High surge current capability •
- Terminals: plated leads solderable per MIL-STD-750, • Method 2026
- Weight: 0.078oz, 0.22g


		Absolute maximum ratings and general electrical characteristics ($T_a = 25^{\circ}C$)								
Gumbal	Value				Unit					
Symbol	MB2S	MB4S	MB6S	MB8S	MB10S					
ge V _{RRM}	200	400	600	800	1000					
V _{RMS}	140	280	420	560	700	V				
VDC	200	400	600	800	1000					
1)	0.5									
r. ²⁾ I _{F(AV)}	0.8				1					
sed I _{FSM}	35					A				
l ² t	5.0					A ² sec				
ge V _F	1.0				v					
DC reverse current T _a =25°C 5.0										
5°C	100				μΑ					
CJ	13				pF					
R _{eJA}	R _{eJA} 85 ¹) R _{eJA} 70 ²)									
R _{eJA}					°C/W					
R _{eJL}	20 1)									
Tj, Tstg	-55 ~ 150				°C					
	$ \begin{array}{c c} & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & &$	$\begin{array}{c c c c c c c } & MB2S \\ \hline \ MB2S \\ \hline \ MB2S \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c c c c c c c c } & MB2S & MB4S \\ \hline \\ \hline \\ ge & V_{RMS} & 140 & 280 \\ \hline V_{DC} & 200 & 400 \\ \hline \\ \hline \\ V_{DC} & 200 & 400 \\ \hline \\ \hline \\ \hline \\ r. ^{2)} & I_{F(AV)} & \hline \\ \hline$	Symbol MB2S MB4S MB6S MB6S ge VRM 200 400 600	Symbol MB2S MB4S MB6S MB8S MB8S ge VRM 200 400 600 800 <th< td=""><td>Symbol MB2S MB4S MB6S MB8S MB10S ge VRM 200 400 600 800 1000 VRMS 140 280 420 560 700 VDC 200 400 600 800 1000 1) VDC 200 400 600 800 1000 1) IF(AV) 0.5 0.5 0.8 0.9 0.8 0.9 0.9 0.9 0.9</td></th<>	Symbol MB2S MB4S MB6S MB8S MB10S ge VRM 200 400 600 800 1000 VRMS 140 280 420 560 700 VDC 200 400 600 800 1000 1) VDC 200 400 600 800 1000 1) IF(AV) 0.5 0.5 0.8 0.9 0.8 0.9 0.9 0.9 0.9				

on 0.05x0.05" (1.3x1.3mm) pads s ероху PCB mo


2) On aluminum substrate PCB with an area of 0.8"x0.8" (20x20mm) mounted on 0.05x0.05"(1.3x1.3mm) solder pad

3) At 4.0V, 1.0MHz

Ordering information						
Part Number	Package	Shipping Quantity	Dimensions			
MB2S ~ MB10S	MBS	3 000 pcs / reel				
		36 000 pcs / box	40 x 37 x 27 cm			

Disclaimer

Akyga semi reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Akyga semi or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on Akyga semi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Akyga semi does not assume any liability arising out of the application or use of any product or circuit. Akyga semi products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Akyga semi. Customers using or selling Akyga semi components for use in such applications do so at their own risk and shall agree to fully indemnify Akyga semi and its subsidiaries harmless against all claims, damages and expenditures.