

AT5218 300mA Ultra-Low Quiescent Current, High PSRR LDO with Fast Enable Function

FEATURES

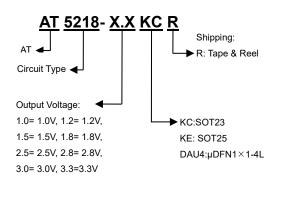
- Ultra-Low Quiescent Current : 0.3µA(Typ.)
- Wide operating voltage range : 2.0 V to 7 V
- Maximum Output Current: 300mA
- Output Voltage Range: 1.0V~3.3V
- High Output Accuracy: ±1.5% (±1% optional)
- Low Dropout Voltage : 220mV@200mA /3.3V
- High PSRR: 70AdB@1KHz
- Low Temperature Coefficient
- Output Only 1uF Capacitor Required
- Thermal Shut Down(TSD), Short Circuit Protection(SCP), Over Current Protection(OCP)
- Can be connected down to 1uF output capacitor
- Fast Discharge Function
- Available in µDFN1x1-4L

 SOT23
 SOT25

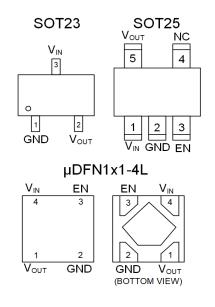
 packages

DESCRIPTION

The AT5218 series are ultra-low quiescent current, high speed and high precision low differential voltage linear regulator with enable pin and fast discharge shutdown.


Provide input over current protection, output short circuit protection, thermal shut down and other functions to protect the chip from damage under abnormal working conditions. Output voltage has 3.3V, 3.0V, 2.8V, 2.5V, 1.8V, 1.5V, 1.2V and 1.0V are optional.

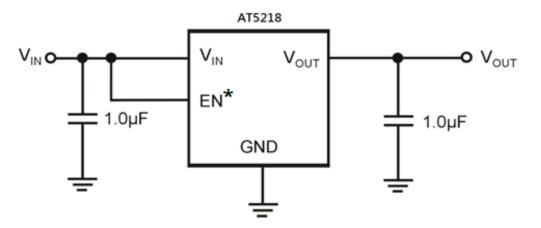
The AT5218 is available in $\mu DFN1x1\text{-}4L^{SOT23}$ \searrow SOT25 packages.


APPLICATION

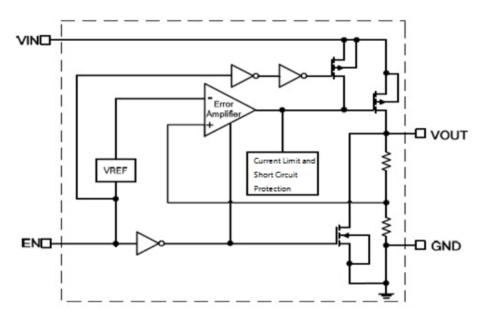
- Radio Communication Equipment
- Battery powered products
- Reference voltage source
- Other low voltage regulators

ORDER INFORMATION

PIN CONFIGURATIONS (TOP VIEW)



PIN DESCRIPTIONS


Pin Name	Pin Description
V _{IN}	Input Pin
GND	Ground Pin
EN	Enable Pin , Active high.This pin must not be left floating.
NC	No Connection
V _{OUT}	Output Pin.

TYPICAL APPLICATION CIRCUITS

*EN pin must not be left floating.

BLOCK DIAGRAM

RoHS Compliant and Halogen Free

ABSOLUTE MAXIMUM RATINGS(Note 1)

Parameter	Symbol	Max Value	Unit	
Input Voltage		V _{IN}	-0.3 to 9.0	V
Output Voltage		V _{OUT}	-0.3 to V _{IN} +0.3	V
Output Maximum Current		I _O	450	mA
Maximum Junction Temperature		ТJ	125	°C
Storage Temperature Range		T _{STG}	-65 to +150	°C
Lead Temperature(Soldering) 5 Sec.		T _{LEAD}	260	°C
	SOT23		280	
Power Dissipation P _D @ T _A =25°C (Note 2)	SOT25	PD	300	mW
	µDFN1x1-4L		400	
	SOT23		357	
Thermal Resistance Junction to Ambient	SOT25	θ_{JA}	357	°C/W
	µDFN1x1-4L		250	
	SOT23		106.6	
Thermal Resistance Junction to Case	SOT25	$\theta_{\rm JC}$	106.6	°C/W
	µDFN1x1-4L		23	
ESD Rating (Human Body Model) (Note 3)		V _{ESD}	2	kV

RECOMMENDED OPERATING CONDITIONS (Note 4)

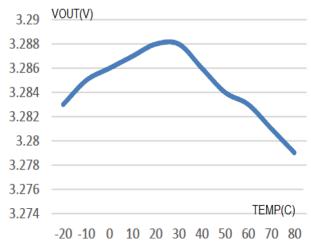
Parameter	Symbol	Operation Conditions	Unit
Supply Input Voltage	V _{IN}	7	V
Enable Input Voltage	V _{EN}	-0.3 to V _{IN}	V
Operating Junction Temperature Range	TJ	-40 to +125	°C
Operating Ambient Temperature Range	T _{OPA}	-40 to +85	°C

Note 1: Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.

Note 2: Thermal Resistance is specified with the component mounted on a low effective thermal conductivity test board in free air at $T_A=25$ °C.

Note 3: Devices are ESD sensitive. Handling precaution recommended.

Note 4: The device is not guaranteed to function outside its operating conditions.


ELECTRICAL CHARACTERISTICS

 $V_{\text{IN}}\text{=}V_{\text{OUT}}$ +1V, V_{OUT} =3.3V,C_L=4.7 $\mu\text{F},T_{\text{A}}\text{=}25^{\circ}\text{C},\text{unless otherwise noted}$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage	V _{IN}		2.0	—	7.0	V
Output Voltage	V _{OUT}	V _{IN} >V _{OUT} +1V,I _{OUT} =1mA,	-1.5	_	+1.5	%
Quiescent Current	Ι _Q	V _{EN=} V _{IN}		0.3	0.9	μA
Shutdown Current	I _{SD}	V _{EN} =0V	_	_	0.1	μA
Maximum output Current	I _{OUT}	V _{IN} -V _{OUT} =0.5V	_	300	_	mA
Dropout Voltage	V _{DROP}	Vout=3.3V I _{out} =100mA, I _{out} =200mA, I _{out} =300mA	_	110 220 370	160 250 400	mV
Linear adjustment rate	ΔV_{LINE}	V _{IN} =3.7V to 7V, I _{OUT} =1mA		0.1	0.15	%/V
Load Regulation	ΔV_{LOAD}	V _{IN} =V _{OUT} +1V, 1mA <i<sub>OUT<300mA</i<sub>		20	30	mV
Current Limit	I _{LIM}	V _{IN} =5V	_	550		mA
Short Circuit Current	I _{SC}	RL=1Ω	_	—	90	mA
EN Pin Input Voltage "H"	V_{ENH}	V _{IN} =5.5V, I _{OUT} =1mA	1.2	_	_	V
EN Pin Input Voltage "L"	V_{ENL}	V _{IN} =5.5V, I _{OUT} =1mA		_	0.4	V
Enable Current	I _{EN}	V _{EN} =1.2V	_	50	100	nA
	PSRR	I _{OUT} =100mA,f=217Hz	—	-68	—	
Ripple Rejection		I _{OUT} =100mA,f=1KHz	_	-70	_	dB
		I _{OUT} =100mA,f=10KHz	_	-60	_	
Output Noise	eNO	10Hz to 100 KHz, C _{OUT} =1µF		100	_	μV(rms)
Temperature Characteristics	T _c	I _{OUT} =30mA, T _A =0~70°C		±100		ppm/°C
Thermal Shutdown Temperature	T _{SD}			160		°C
Thermal Shutdown Hysteresis	HYS _{TSD}		_	20		°C

TYPICAL OPERATING CHARACTERISTICS

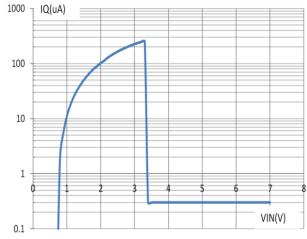
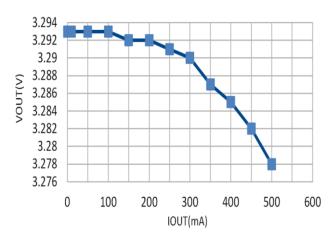



Fig.1 Output Voltage vs. Temperature

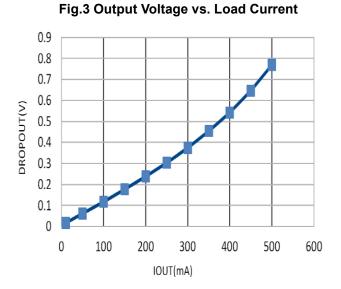


Fig.5 Output Voltage vs. Load Current

Fig.2 Quiescent Current vs. Input Voltage (3.3V)

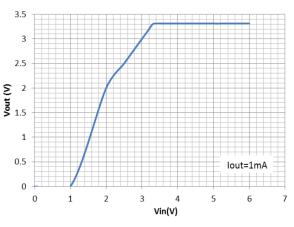


Fig.4 Input Voltage vs. Output Voltage (3.3V)



Fig.6 PSRR Vin=5V,Vout=3.3V,Iout=100mA Cin=1uF,Cout=4.7uF

TYPICAL OPERATING CHARACTERISTICS

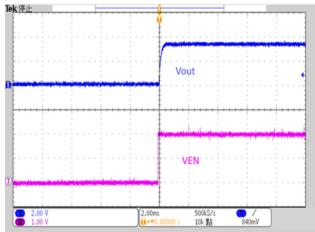


Fig.7 Start-Up(No Load)

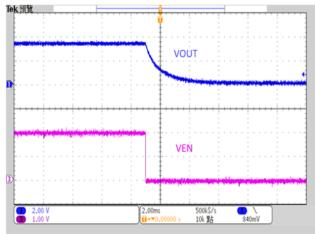
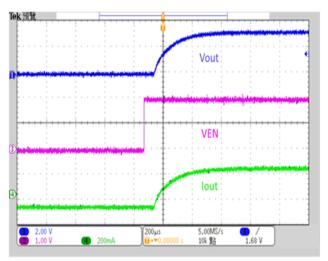
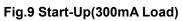




Fig.8 Shutdown(No Load)

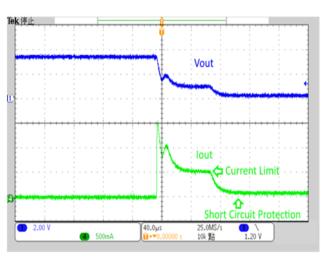


Fig.11 Short Circuit Response (1.5Ω Load)

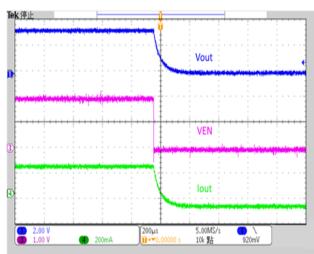


Fig.12 Load Transient Response (100mA Load)

TYPICAL OPERATING CHARACTERISTICS

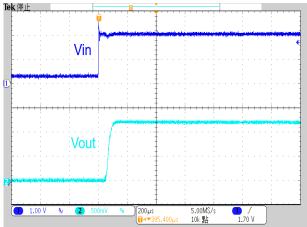


Fig.13 Soft Start Time $V_{IN}=V_{EN}$ (1.2V 100mA)

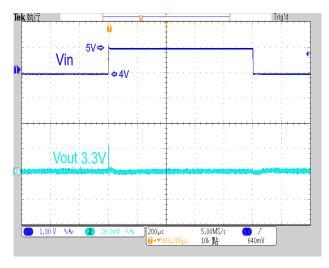
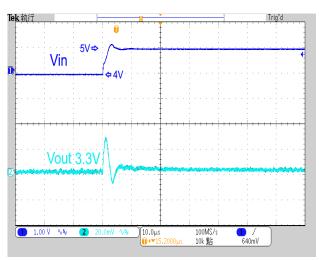



Fig.15 Input Voltage Transient Response (1mA)

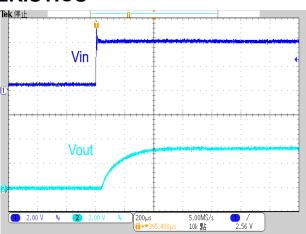
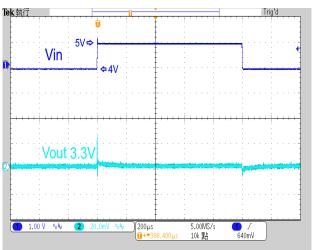
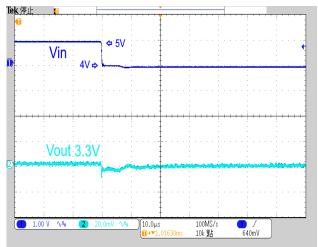




Fig.14 Soft Start Time VIN=VEN (3.3V 100mA)

RoHS Compliant and Halogen Free

APPLICATION INFORMATION

The AT5218 is a ultra-low quiescent current, low dropout linear regulator. The following application section noted would help regulator operate properly.

Input Capacitor Considerations

It is suggested that a value of at least 1uF is chosen for the input capacitor. Capacitor need to be placed close to the regulator input pin. A ceramic type is recommended as they have better temperature coefficients and due to their lower ESR – Equivalent Series Resistance

Output Capacitor Considerations

The output capacitor plays an important role in keeping the output voltage stable. For ceramic types, an output capacitance value of at least 1μ F should be chosen. For E-cap types, a capacitance value of at least 2.2μ F should be chosen. The larger capacitance can improve noise, load-transient response, PSRR, and stability.

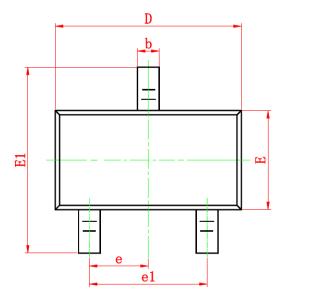
Effect of Potential Difference

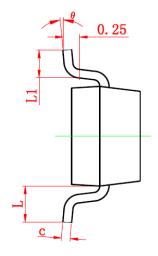
Inside the linear regulator is a transistor between V_{IN} and V_{OUT} and the minimum potential difference to achieve stable transistor operation is called the dropout voltage. When the voltage difference falls below the dropout voltage the transistor cannot maintain stable operation and the output voltage would significantly decreases. In this way, for the linear regulator, the minimum dropout voltage is necessary to set to ensure stable operation at maximum output current. Input voltage must satisfy the equation V_{IN} >= V_{OUT} + V_{drop} . Therefore, if input voltage is much higher than output voltage or output current small enough, this effect could be ignored.

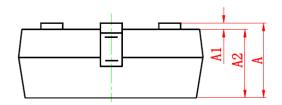
Package & Maximum Output Current

The power dissipation in the LDO is determined by the voltage drop (V_{IN}-V_{OUT}) across the LDO multiplied by the current passing through the LDO (I_{OUT}), which can be calculated from the formula P_D = (V_{IN} - V_{OUT}) * I_{OUT}. Each type of package has different power dissipation. When the input and output voltages are determined, the maximum output current can be calculated according to the package form. I_{OUT} \leq P_{DMAX}/(V_{IN}-V_{OUT}) According to the above formula, you can choose the most suitable package form.

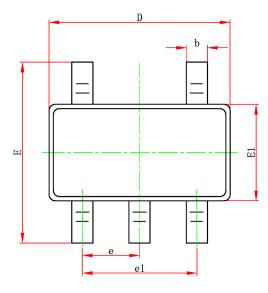
PCB Layout Guide

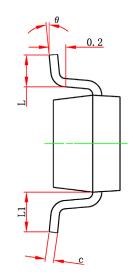

The input and output capacitors should be placed close together and coplanar with the GND pin of the chip to avoid vias. In large load current applications, it is necessary to borrow large copper blocks to help dissipate heat.

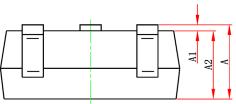

Current Limit


The AT5218 includes a foldback current limiter. It monitors and controls the pass transistor's gate voltage, estimates the output current, and limits the output current under 550mA.

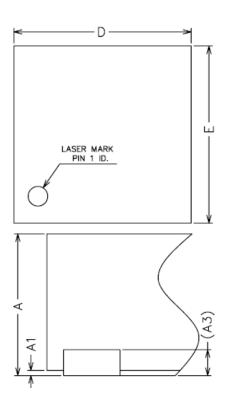
PACKAGE OUTLINE DIMENSIONS SOT23

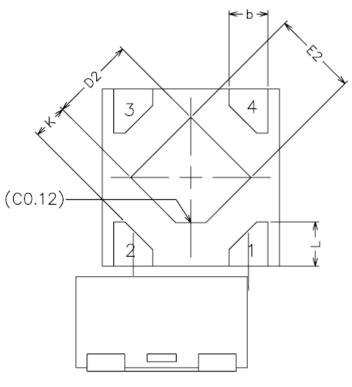





Sumbol	Dimensions In Millimeters		
Symbol	Min	Max	
A	0.900	1.150	
A1	0.000	0.100	
A2	0.900	1.050	
b	0.300	0.500	
С	0.080	0.150	
D	2.800	3.000	
E	1.200	1.400	
E1	2.250	2.550	
е	0.950 TYP		
e1	1.800	2.000	
L	0.550 REF		
L1	0.300	0.500	
θ	0 °	8°	

PACKAGE OUTLINE DIMENSIONS SOT25





Symbol	Dimensions Ir	n Millimeters	
Symbol	Min.	Max.	
A	1.050	1.250	
A1	0.000	0.100	
A2	1.050	1.150	
b	0.300	0.500	
С	0.100	0.200	
D	2.820	3.020	
E1	1.500	1.700	
E	2.650	2.950	
е	0.950(BSC)		
e1	1.800	2.000	
L	0.300	0.600	
L1	0.600REF.		
θ	0°	8°	

PACKAGE OUTLINE DIMENSIONS μ DFN1×1-4L

Symbol	Dimensions In Millimeters			
Symbol	Mix	Nom	Мах	
Α	0.5	0.55	0.60	
A1	0.00	0.02	0.05	
A3	0.100REF			
b	0.17	0.22	0.27	
D	0.95	1.00	1.05	
E	0.95	1.00	1.05	
D2	0.43	0.48	0.53	
E2	0.43	0.48	0.53	
L	0.20	0.25	0.30	
е	0.60	0.65	0.70	
K	0.15	_	_	