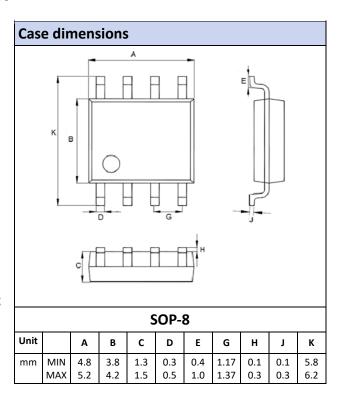


P-Channel Enhancement Mode MOSFET


Primary characteristics					
Symbol	Parameter	Value	Unit		
I _D	Continuous drain current	4.0	Α		
V_{DSS}	Drain source voltage	60	V		
R _{DSON}	Static drain-source on- resistance	135	mΩ MAX		

Features

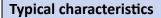
- SOP-8 case for easy automatic insertion
- Pb-free and RoHS compliant
- High density cell design for ultralow R_{DS(ON)}
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation
- Molding compound: UL Flammability Classification Rating 94V-0
- Terminals: matte tin-plated leads; solderability-per MIL-STD-202, Method 208

Applications

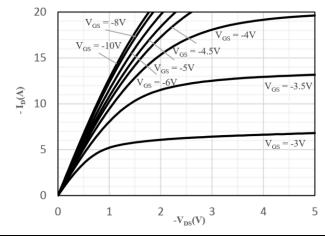
- Power switching applications
- Hard switched and high frequency circuits
- Uninterruptible power supply

Maximum ratings (T _A = 25°C unless otherwise noted)							
Characteristic	Symbol	Value	Unit				
Drain-source voltage	V _{DSS}	60	V				
Gate-source voltage	V _{GSS}	±20	V				
Continuous drain current (T _C =25°C)	ID	4.0	А				
Pulsed drain current ²⁾	I _{DM}	20	Α				
Power Dissipation	P _D	1.6	W				
Operating junction temperature range	T _J , T _{STG}	-55 ~ 150	°C				

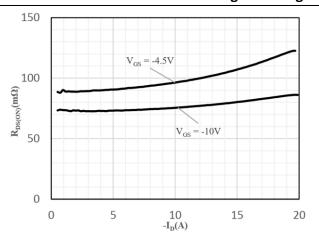
Thermal characteristics						
Characteristic	Tost soudition	Symbol	Value			Unit
Characteristic	Test condition		Min.	Тур.	Max.	Uill
Thermal resistance junction-ambient 1)	-	R _{eJA}	-	78	-	°C/W

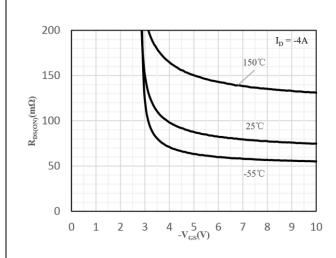


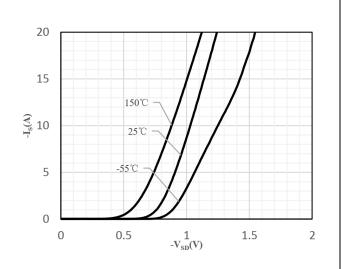
Electrical characteristics (T _A = 25°C)			1			
Characteristic	Test condition	Symbol	Value			Unit
Characteristic			Min.	Тур.	Max.	Jilit
Drain-source breakdown voltage	V _{GS} =0V, I _D =250μA	V _{DSS}	60	-	-	V
Zero gate voltage drain current	V _{DS} =60V, V _{GS} =0V	I _{DSS}	-	-	1.0	μΑ
Gate body leakage current	V _{GS} =±20V, V _{DS} =0V	I _{GSS}	-	-	±100	nA
Gate threshold voltage 3)	V _{DS} =V _{GS} , I _D =250yA	$V_{GS(TH)}$	1.0	1.6	3.0	V
Drain-source on-state resistance 3)	V _{GS} =10V, I _D =4.0A	D	-	70	90	mΩ
Drain-source on-state resistance -/	V _{GS} =4.5V, I _D =4.0A	R _{DS(ON)}	-	100	135	
Dynamic electrical characteristics 4)						
	-		Value			
Characteristic	Test condition	Symbol	Min.	Тур.	Max.	Unit
Forward transconductance	V _{DS} =5.0V, I _D =4.0A	grs	-	10	-	S
Input capacitance	V _{DS} =30V	Cıss	-	930	-	
Output capacitance	V _{GS} =0V	Coss	-	55	-	pF
Reverse transfer capacitance	f=1.0MHz	C _{RSS}	-	41	-	
Turn ON delay time	V _{DS} =30V	t _{d(ON)}	-	8.0	-	
Turn ON rise time	V _{GS} =10V	tr	-	4.0	-	
Turn OFF delay time	R _G =3.0Ω	t _{d(OFF)}	-	32	-	ns
Turn OFF fall time	R _L =7.5Ω	t _f	-	7.0	-	
Switching characteristics 4)						
		Symbol	Value		Ī ,	
Characteristic	Test condition		Min.	Тур.	Max.	Unit
Total gate-charge	V _{DS} =30V	Q _G	-	20	-	
Gate to source charge	V _{GS} =10V	Q _{GS}	-	3.1	-	nC
Gate to drain (Miller) charge	I _D =4.0A	Q _{GD}	-	3.2	-	
Source-drain diode characteristics						
Characteristic	Test condition	Symbol	Value			Unit
Characteristic	lest condition	Symbol	Min.	Тур.	Max.	Oiiit
Diode forward voltage ³⁾	I _{SD} =4.0A, V _{GS} =0V	V _{SD}	-	-	1.2	V
Source-drain current (body diode)		I _{SD}	-	-	4.0	Α

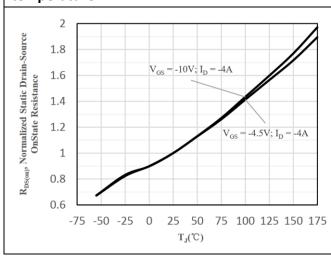

- Reja, is the sum of the junction-to-case and case-to-ambient resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. Rejic is guaranteed by design while Rec. is determined by the user's board design. a) 78°C/W when mounted on a 1in^2 pad of 2oz copper on FR-4 board b) 100°C/W when mounted on a minimum pad
- Repetitive rating: pulse width limited by maximum junction temper Pulse test: pulse width ≤300μs, duty cycle ≤2%
- 2) 3)
- Guaranteed by design, not subject to production

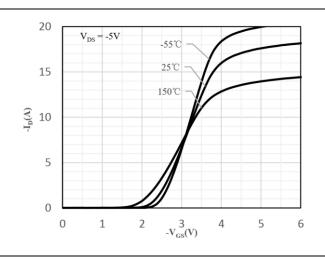
Page 2/5 2023-09; REV. 1 Akyga semi

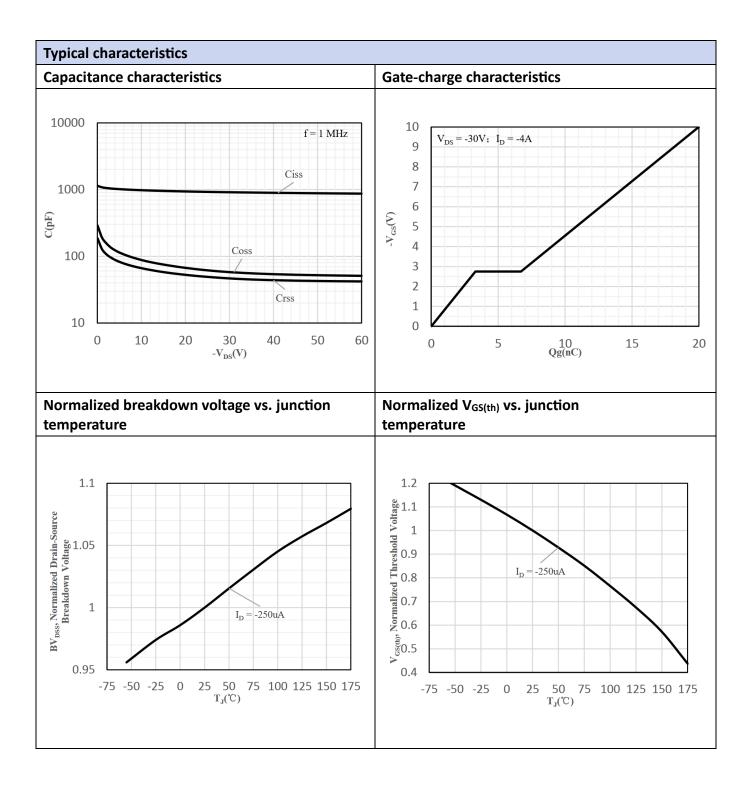


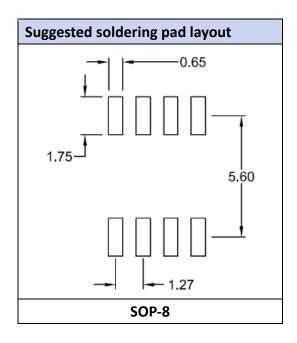

Output characteristics


On-resistance vs. drain current and gate voltage


ON-resistance vs. gate-source voltage


Body-diode characteristics


Normalized ON-resistance vs. junction temperature


Transfer characteristics

Ordering information						
Part Number	Marking	Package	Shipping Quantity	Dimensions		
AKS4P06-S8	4P06	SOP-8	4000 pcs / tape & reel			

Disclaimer

Akyga semi reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Akyga semi or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on Akyga semi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Akyga semi does not assume any liability arising out of the application or use of any product or circuit. Akyga semi products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Akyga semi. Customers using or selling Akyga semi components for use in such applications do so at their own risk and shall agree to fully indemnify Akyga semi and its subsidiaries harmless against all claims, damages and expenditures.