Page 1 of 11

APPROVAL SHEET

Client	
Description	METAL FILM RESISTORS

1. GENERAL INSTRUCTION:

1-1 SCOPE

This specification applies to the Metal Film Resistor

2. PART NUMBER

2-1	2-2	2-3	2-4	2-5	2-6
MF	T81(P.M.F)	1W	1R	J	100PPM
Туре	Terminal Form	Rate Wattage	Nominal Resistance	Tolerance	Temperature Coefficient

2-1. Type

Metal Film Resistor is called "MF".

MF ---Copper wire product

MF-CP ---CP wire product

2-2. Terminal Form

Upon the shape of terminal, it has T81, T60, P, M and F form

2-3. Rated Wattage

Shown by "W", such as 1/2W, 1W, 2WS, $5W_{\circ}$

2-4. Nominal Resistance:

 $R,K \Omega$ are its unit which is in accordance with E-96 series, such as 1R, 0R1, 0R47, 1K. 2-5. Tolerance

It is measured by Bridge-method at room temperature and expressed by a capital letter.

J \pm 5%, G \pm 2%, F \pm 1%, D \pm 0.5%, C \pm 0.25%, B \pm 0.1%,

2-6. Temperature Coefficient

Temperature Coefficient is identified by specific numerical values, such as: 50PPM, 100PPM, 200PPM(Only when required)

3 .RATING:

MF (METAL FILM FIXED RESISTORS)

STVLE	MAX	MAX	RESISTANCE VALUE
STILE	WORKING	OVERLOAD	RANGE
MF1/6W.1/8W. 1/16W	200V	400V	
MF1/4W / I/4WS	250V	500V	
MF1/2W / 1/2WS	350V	700V	
MF1W / 1WS	500V	1000V	10E——1M
MF2W / 2WS	500V	1000V	
MF3W/3WS	500V	1000V	
MF5W/5WS	500V	1000V	

4-1.POWER RATING

Power rating is defined as maximum power rating continuously applied under ambient

temperature at 70 $^{\circ}$ C.when the ambient temperature exceeds 70 $^{\circ}$ C ,use chart 1.

4 - 2 RATED VOLTAGE

Rated voltage is defined as the DC or AC (effective Value at commercial frequency example 50 C/S,60 C/S) Voltage when rated power is applied and can be calculated By the following EQUATION $E = \sqrt{PR}$ E=RATED VOLTAGE P=RATED POWER (WATTS) R=NOMINAL RESISTANCE VALUE (OHM) When the calculated rated voltage exceeds the Maximum usable voltage flue shown in CHART 1,the Maximum usable voltage is defined as the voltage

According to the power-decreasing curve shown in CHART1.

ITEM (STANDARD)	PERFORMANCE AND/OR QUALIITY ACCEPTANCE	TEST METHOD
Resistance value Vs Temperature Characteristics	±100PPM/°C	JIS-C-5202 5.2Measure resistance (Ro ohm) at roomTemperature(To °C)Measure again the same at 100°CHigher then room temperature $PPM = \frac{R - R_O}{R_O} * \frac{10^6}{(T_0 + 100) - T_0}$
ITEM (STANDARD)	PERFORMANCE AND/OR QUALIITY ACCEPTANCE	TEST ME THOD
Short time overload	The resistance variation shall be within $\pm(0.5\% + 0.05$ ohm) and there Shall be no mechanical breakage	JIS-C-5202 5.5 Apply DC voltage 2.5times the rated Voltage for 5 seconds The leave at room temperature for 30 Minutes then measure MAX overload Voltage 0.50W – 700V (DC)
Insulation resistance	10,000M ohm or more	JIS-C-5202 5.6 in V-BLOCK Lay the resistor on 90° angle metal V Block apply 500VDC between resistor Lead and V block for one Minute And Measure
Voltage endurance	The resistance variation shall be within±(0.5% + 0.05ohm) and there shall Be no mechanical breakage	JIS-C-5202 5.7 Icy the resistor on the 90° angle metal V Block and apply reamed AC voltage for One Minute. Test voltage 0.25W – 500V (AC) 0.50W –700V(AC)
Intermittent overload	Resistance variation shall be Within ±(0.50% + 0.050hm)	JIS-C-5202 5.8 Apply AC voltage 4 times the rated voltage for 1 second and rest for 25 seconds and Repeat this cycle for 10000±200times leave resistor 30 minutes at room temperature after test and measure Maximum voltage for intermittent Overload.0.50W – 700V(AC)

Terminal strength	Resistance variation shall be within $\pm (0.5\% + 0.05$ ohm) also there Shall be on mechanical breakage	Pull test apply 2.5kg force to the lead in the direction of lead axisfor30±5 seconds.
Heat resistively Against soldering	Resistance variation shall be within ± (0.25%+0.050hm) also there Shall be on mechanical breakage	JIS-C-5202 7.10 Dip the lead in to a solder bath having a Temperature of $350^{\circ}C \pm 10^{\circ}C$ up to 4 ± 0.8 mm from the body of the resistor and hold it for 3 ± 0.5 seconds leave the resistor at room temperature 3 hours after ,then Measure
Load life test	The variation of the resistance Shall be within \pm (1.5%+0.05ohm) Also there shall be no mechanical Breakage	JIS-C-5202 7.10 In the constant temperature chamber having Temperature70°C ± 2 °C, apply rated Dc voltage for 1.5hour and shut voltage for 0.5 hour and repeat this cycle for 1000 hours, leave in room temperature hour after test, then measure
EM (STANDARD)	PERFORMANCE AND/OR QUALITY ACCEPTANCE	TEST METHOD
Solder ability	More than 95% of the surface of the lead shall be covered by new solder after the leads are dipped in the Solder	JIS-C-5202 6.5 Dip the lead in to a solder bath having a Temperature of $260^{\circ}C \pm 5^{\circ}C$ up to 4 ± 0.8 mm from the body of the resistor and hold it for 5 ± 0.5 seconds then inspect
Humidity load test	Resistance variation be Within \pm (1.5% + 0.05ohm) Also there shall be no mechanical breakage	JIS-C-5202 7.9 In temperature chamber having temperature 40 °C \pm 2 °C, relative humidity 90 – 95%, Apply rated voltage 1.5hour and shut voltage 0.5 hour repeat this cycle for 1000 hours, leave in room temperature for hour after test, then measure

5.Marking

2 nd significant figure

- 1 st significant figure

Color refer

Color	1 st Band	2 nd Band	3 rd Band	4 th Band	Tolerance
Black	0	0	0	100	
Brown	1	1	1	101	$\pm 1.00 \%$
Red	2	2	2	10 ²	
Orange	3	3	3	10 ³	
Yellow	4	4	4	104	
Green	5	5	5	10 ⁵	$\pm 0.50\%$
Blue	6	6	6	106	±0.25 %
Violet	7	7	7	107	±0.10%
Grey	8	8	8	108	
White	9	9	9	109	
Gold				10-1	
Silver				10-2	

6. Construction and Dimension

- 6-1.Construction
 - a. Lead Wire .
 - b. End Cap.
 - c. Metal Film
 - d. Ceramic Rod
 - e. Epoxy Resin.
 - f. Color Code

6-2 Dimensions

TABLE:

WATTS	L	D	Н	$d\pm 0.05 \text{mm}$	
1/6W 1/8W 1/16W	22402	1000	28 2.0	0.4	
1/4WS	3.2 ± 0.3	1.8 ± 0.3	28±2.0	0.4	
1/4W	$c \circ l \circ c$	22402	28.0.1.2.0	0.45	
1/2WS	6.0 ± 0.5	2.3 ± 0.3	28.0 ± 2.0	0.45	
1/2W	0.0 0.5	22402	26.0 2.0	0.52	
1WS	9.0 ± 0.5	3.2 ± 0.3	26.0 ± 2.0	0.52	
1W	11.0 + 1.0	27+05	25.0 + 2.0	0.65	
2WS	11.0 ± 1.0	3.7 ± 0.3	23.0 ± 2.0	0.65	
1W	11.0 + 1.0	42+05	25.0 + 2.0	0.65	
2WS	11.0 ± 1.0	4.2 ± 0.3	33.0 ± 3.0	0.65	
2W	15.0 ± 1.0	50+05	22.0 ± 2.0	0.72	
3WS	15.0 - 1.0	5.0 - 0.5	55.0 - 5.0	0.72	
3W	17.0 + 1.0	$(0 \pm 0.5$	260 ± 20	0.72	
5WS	17.0±1.0	0.0±0.3	30.0 ± 3.0	0.72	
5W	24.0 ± 1.0	8.0±1.0	33.0 ± 3.0	0.72	

7. FORMED DIMENSIONS

7-1. M – TYPE

WATTO	DIMENSIONS (mm)						
WAIIS	L	P±1.0	D	d±0.05	H±1.0		
1/6W/1/8W/1/16W /1/4WS	3.2±0.3	6	1.8±0.3	0.40	8.0		
1/4W/1/2WS	6.0±0.5	10	2.3±0.3	0.45	8.0		
1/2W/1WS	9.0±0.5	12.5/15	3.2±0.3	0.52	8.0		
1W/2WS	11.0±1.0	15	4.2±0.5	0.65	10		
2W/3WS	15.0±1.0	20	5.0±0.5	0.72	10		

3W/5WS	17.0±1.0	25	6.0±0.5	0.72	10
5W	24.0±1.0	33	8.0±1.0	0.72	10

7-2 . MB - TYPE

WATTS	DIMENSIONS (mm)								
	L	P±1.0	D	d±0.05	H1±1.0	H2±1.0	t±0.2		
1/2W/1WS	9.0±0.5	12.5	3.2±0.3	0.52	10.5	5.0	1.20		
1W/2WS	11.0±1.0	15	4.2±0.5	0.65	10.5	5.0	1.25		
2W/3WS	15.0±1.0	20	5.0±0.5	0.72	10.5	5.0	1.25		
3W/5WS	17.0±1.0	25	6.0±0.5	0.72	10.5	5.0	1.25		
5W	24.0±1.0	30	8.0±1.0	0.72	10.5	5.0	1.25		

7 - 3. F - TYPE

WATTS	DIMENSIONS (mm)							
	L	P±1.0	D	d±0.05	h±1.0	H±1.0	Emax	
1/4W/1/2WS	6.0±0.5	6-8	2.3±0.3	0.45	8.0	14	3	
1/2W/1WS	9.0±0.5	6-8	3.2±0.3	0.52	8.0	18	3.5	
1W/2WS	11.0±1.0	6-8	4.2±0.5	0.65	8.0	20	3.5	
2W/3WS	15.0±1.0	6-8	5.0±0.5	0.72	8.0	25	3.5	
3W/5WS	17.0±1.0	6-8	6.0±0.5	0.72	8.0	30	3.5	

7–4. FK2-TYPE, FK1–TYPE AND FKK-TYPE

WATTS	DIMENSIONS(mm)							
	L	P±1.0	D	d±0.05	h+1/-0	H±1.0	Emax	
1/2W/1WS	9.0±0.5	5-7	3.2±0.3	0.52	8	18	3.5	
1W/2WS	11.0±1.0	5-9	4.2±0.5	0.65	8	20	3.5	
2W/3WS	15.0±1.0	5-9	5.0±0.5	0.72	8	25	3.5	
3W5WS	17.0±1.0	5-10	6.0±0.5	0.72	8	30	3.5	

8. Taping Dimensions

WATTS	Туре	Т	p±0.5	W±0.5	D1-D2 MAX	E MAX	Z MAX	S MAX	I MAX
-------	------	---	-------	-------	--------------	----------	----------	----------	-------

1/6W/1/8W 1/16W/1/4WS	T- 26	26±1.5	5	6	0.8	0	1.2	0.8	3.2
	T- 52	52±1.5	5	6	0.8	0	1.2	0.8	3.2
1/4W 1/2WS	T- 26	26±1.5	5	6	0.8	0	1.2	0.8	3.2
	T- 52	52±1.5	5	6	0.8	0	1.2	0.8	3.2
1/2W/1WS	T- 52	52±1.5	5	6	0.8	0	1.2	0.8	3.2
1W/2WS	T- 73	73±1.5	5	6	0.8	0	1.4	0.8	3.2
2W/3WS	T- 73	73±1.5	10	6	0.8	0	1.4	0.8	3.2
3W/5WS	T- 73	73±1.5	10	6	0.8	0	1.4	0.8	3.2

9 . PACKING

- 9 1. TAPING TYPE
- LABEL SPECIFICATION
 - 1. TYPE
 - 2. WATTS TOLERANCE
 - **3. RESISTANT QUANTITY**
 - 4. P/N
 - 5. LOT NO.

TYPE	WATTS	W(mm)	H(mm)	L(mm)	Q'TY(pcs)	
T-26	1/6W 1/8W 1/16W 1/4WS	50	67	260	5000	
	1/4W/ 1/2WS	50	100	260	5000	
T-52(60)	1/6W / 1/8W 1/16W 1/4WS	80	72	260	5000	

	1/4W/ 1/2WS	80	100	260	5000
	1/2W/ 1WS	80	85	260	2000
T-73(81)	1W/ 2WS	90	77	260	1000
	2W/ 3WS	90	95	260	1000
	3W/5WS	90	77	260	500
T84(94)	5W	110	92	260	250

WATTS		TYPE	L(mm)	W(mm)	H(mm)	POLY BOG	BOX(pcs)
1/6W 1/8W	1/16W 1/4WS	Р	240	140	76	1000	20000
1/4W	1/2WS	Р	240	140	76	500	10000
1/2W	1WS	Р	240	140	76	500	5000
1W	2WS	Р	240	140	76	200	2000
2W	3WS	Р	240	140	76	100	1500
3W/5WS		Р	240	140	76	100	1000